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Charge-Sharing Locking Fractional-// Frequency Synthesis

Abstract:

Ultra-low jitter (sub-100fs/50fs) frequency synthesis is highly desirable for 5G/6G RF and
mm-Wave (mmW) communications to support the complex modulation schemes (e.g.,
1024QAM). The idea of charge-sharing locking is that the capacitor of the LCtank itself will be
periodically charge-shared with another capacitor charged by a DAC to a voltage that is
expected from a waveform at that particular time point, resulting in an instantaneous phase
correction. The resulting voltage change will be detected and used to correct the DCO
frequency. This results in a great simplification of circuitry and consumed power while

delivering sub-100fs integrated jitter.

1. Proposed CSL architecture:

Figure 1 shows the basic concept of charge-sharing locking (CSL). At the heart lies the
LC-tank oscillator generating a (near) sinusoidal waveform of frequency. During the high-
level of reference clock ref, the digital logic (DIG) driving the DAC presets s On the
sharing capacitor Grare (via switch S) to the expected oscillator waveform voltage at the
significant reference instances (defined as ref's falling edges. Afterwards, a narrow pulse
shortly connects Genare to Cosc (i.€., 51 OFF,S; ON) for the actual CSL operation. After the charge-
sharing operation with the oscillator is completed, the charge residue leftover in the Giare
will contain information of the frequency deviation. This voltage is digitized by a SAR-ADC
upon asserting clk_q_trans. The ADC output is passed through the DZ, accumulator, and
attenuation factor Kl (affecting the convergence speed) to generate the oscillator tuning
word (OTW).
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Fig .1. Basic architecture of charge-sharing locking.

2. Proposed Digital-to-Time Converter

To support fractional-/ operation in CSL, a high-performance digital-to-time converter based
on R(C-delay is introduced. Several techniques are employed to mitigate the nonlinearity of
DTG, including linearized R and ¢, dummy cap-bank for stabilizing the supply ringing, etc. The
post simulated performance of DTC is shown in Fig. 2, achieving 9-bits, LSB: ~500 fs, INL: <
0.3 LSB, power < 0.5 mW.
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Fig .2. Post simulation of the proposed digital-to-time converter (DTC) supporting fractional-// CSL.

3. Simulation Results

Due to the complexity of mixed-signal (including RF) system of CSL-PLL, it is almostimpossible
to run “full” post-simulation with the whole chip. Instead, we model some relative individual
blocks, e.g., ADC, DAC, DTC, with Verilog-AMS models, matching their own post-simulation
results with their Verilog-AMS models. The whole chip simulation is running with Verilog-AMS
models, Calibre View and EMX S-parameters (for DCO).

Fig. 3 shows the post-simulated rms jitter and spur performance. It achieves sub-30 fs and
sub-50 fs rms jitter for integer-N and fractional-N operation. Due the high-linearity of the
proposed DTC, the in-band spur is around -59 dBc. To the best of authors’ knowledge, this is
the best performance for fractional-/V PLL, demonstrating the advantage of CSL.
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Fig. 3 Simulated rms jitter and spur performance for CSL: (a) Integer-/ operation (b) Fractional-/V operation
(fractional number = 1/1024).

4. Tape-out:

In May 2021, the chip (occupying 1.3mm * 1.4mm) was successfully tape-out, as shown in
Fig. 4. Silicon was received in September.
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Fig. 4. Chip layout in TSMC 28nm LP (1.3mm * 1.4mm).
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5. Measurement

1. 28GHz Quadrature DCO Free Running Testing:
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Fig. 5. PN plot of 28GHz quadrature free-running oscillator.

The measured PN of the 28GHz quadrature DCO achieves phase noise @1MHz -105dBc/Hz
with low flicker PN corner < 200kHz. Its PN@1MHz is more than 10dB better than other state-
of-the-art quadrature oscillators in this frequency range.
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2. Close-loop Measurements

Integer-N Measurements w/ 250MHz Crystal
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Fig. 6 Integer-N measurements with 250MHz crystal: (@) Phase noise, rms random jitter, and (b) reference

spurs at 30GHz. (c) RMS random jitter and reference spurs over the tuning range.

Integer-N & Fractional-N Measurements w/~128.8MHz Crystal
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Fig. 7 Integer-N and fractional-N measurements with 128.8 MHz crystal: (a) Phase noise, rms random jitter,

and (b) reference spurs at integer-N mode. (c)--(f) Phase noise, rms random jitter, and spurs at fractional-N

mode.

Future work:
e More measurements
e JSSC writing
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