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Abstract:

Ultra-low jitter (sub-100fs/50fs) frequency synthesis is highly desirable for 5G/6G RF and
mm-Wave (mmW) communications to support the complex modulation schemes (e.g.,
1024QAM). The idea of charge-sharing locking is that the capacitor of the LCtank itself will be
periodically charge-shared with another capacitor charged by a DAC to a voltage that is
expected from a waveform at that particular time point, resulting in an instantaneous phase
correction. The resulting voltage change will be detected and used to correct the DCO
frequency. This results in a great simplification of circuitry and consumed power while
delivering sub-100fs integrated jitter.

1. Proposed CSL architecture:

Figure 1 shows the basic concept of charge-sharing locking (CSL). At the heart lies the
LC-tank oscillator generating a (near) sinusoidal waveform of frequency. During the high-
level of reference clock ref, the digital logic (DIG) driving the DAC presets lswae 0N the
sharing capacitor Ghare (via switch S;) to the expected oscillator waveform voltage at the
significant reference instances (defined as ref's falling edges. Afterwards, a narrow pulse
shortly connects Ghare to Cosc (i.€., S+ OFF,S; ON) for the actual CSL operation. After the charge-
sharing operation with the oscillator is completed, the charge residue leftover in the Care
will contain information of the frequency deviation. This voltage is digitized by a SAR-ADC
upon asserting clk_q_trans. The ADC output is passed through the DZ, accumulator, and
attenuation factor Kl (affecting the convergence speed) to generate the oscillator tuning
word (OTW).
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Fig .1. Basic architecture of charge-sharing locking.

2. Proposed Digital-to-Time Converter

To support fractional-/N operation in CSL, a high-performance digital-to-time converter based
on R(C-delay is introduced. Several techniques are employed to mitigate the nonlinearity of DTC,
including linearized Rand ¢, dummy cap-bank for stabilizing the supply ringing, etc. The post
simulated performance of DTCis shown in Fig. 2, achieving 9-bits, LSB: ~500 fs, INL: < 0.3 LSB,
power < 0.5 mW.
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Fig .2. Post simulation of the proposed digital-to-time converter (DTC) supporting fractional-// CSL.
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3. Simulation Results

Due to the complexity of mixed-signal (including RF) system of CSL-PLL, it is almostimpossible
to run “full” post-simulation with the whole chip. Instead, we model some relative individual
blocks, e.g., ADC, DAC, DTC, with Verilog-AMS models, matching their own post-simulation
results with their Verilog-AMS models. The whole chip simulation is running with Verilog-AMS
models, Calibre View and EMX S-parameters (for DCO).

Fig. 3 shows the post-simulated rms jitter and spur performance. It achieves sub-30 fs and
sub-50 fs rms jitter for integer-N and fractional-N operation. Due the high-linearity of the
proposed DTC, the in-band spur is around -59 dBc. To the best of authors’ knowledge, this is

the best performance for fractional-VPLL, demonstrating the advantage of CSL.

CKV clock: fo=9298.000027 MHz, integ PE=29.58516 fs (30-Mar-2021 12:05: C
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Fig. 3 Simulated rms jitter and spur performance for CSL: (a) Integer- /N operation (b) Fractional-/V operation
(fractional number = 1/1024).

4. Tape-out:

In May 2021, the chip (occupying 1.3mm * 1.4mm) was successfully tape-out, as shown in

Fig. 4. Silicon was received in September.
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Fig. 4. Chip layout in TSMC 28nm LP (1.3mm * 1.4mm).
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5. Measurement

1. 28GHz Quadrature DCO Free Running Testing:

MultiView Spectrum n Phase Noise n -

Nominal Frequency 28.045199957 GHz | Measured Level ~-13.55 dBm | Measured Freq 28.045199957 GHz
Ref Level & Att -13.00 dBm, Att O dB Initial Delta -3.42 dB Initial Delta 7.49 kHz / 0.27 ppm
Measurement 100 kHz to 30 MHz Drift -0.19 dB Drift 534,30 kHz / 12.05 ppm
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Fig. 5. PN plot of 28GHz quadrature free-running oscillator.

The measured PN of the 28GHz quadrature DCO achieves phase noise @1MHz -105dBc/Hz

with low flicker PN corner < 200kHz. Its PN@1MHz is more than 10dB better than other state-
of-the-art quadrature oscillators in this frequency range.

2. Close-loop Measurements
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Integer-N Measurements w/ 250MHz Crystal
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Fig. 6 Integer-N measurements with 250MHz crystal: (@) Phase noise, rms random jitter, and (b) reference

spurs at 30GHz. (c) RMS random jitter and reference spurs over the tuning range.
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Integer-N & Fractional-N Measurements w/ ~128.8MHz Crystal
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Fig. 7 Integer-N and fractional-N measurements with 128.8 MHz crystal: (a) Phase noise, rms random jitter,
and (b) reference spurs at integer-N mode. (c)--(f) Phase noise, rms random jitter, and spurs at fractional-N
mode.

6. Achievements

There are several papers (1 JSSC, 1 TCAS-Il, and 2 TCAS-Il) with this project have been
published, explained in detail about the low jitter mechanisms of charge-sharing locking and
low flicker phase noise DCO. The detailed list are as follows:

e Y. Hu, X Chen, T Siriburanon, J. Du, V. Govindaraj, A. Zhu and R. B. Staszewski, “A charge-
sharing locking technique with a general phase noise theory of injection locking”, IEEE Journal of
Solid-State Circuits (/SSC), vol. 57, iss. 2, pp. 518—534, Feb. 2022.
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e Y.Hu,T.Siriburanon and R. B. Staszewski, “Multirate Timestamp Modeling for Ultra-Low-Jitter
Frequency Synthesis: A Tutorial (Invited Paper)”, IEEE Trans. on Circuits and Systems Il (TCAS-I),
vol. 69, iss. X, pp. XX—Xxx, Xx. 2022.

e Y. Huy, T. Siriburanon and R. B. Staszewski, “Oscillator flicker phase noise: A tutorial (Invited
Paper)"”, IEEE Trans. on Circuits and Systems Il (TCAS-1), vol. 68, iss. 2 pp. 538—-544, Feb. 2021.

e X. Chen, Y. Hu*, T. Siriburanon, J. Du, R. B. Staszewski, and A. Zhu, “Flicker Phase Noise
Reduction Using Gate—Drain Phase Shift in Transformer-Based Oscillators”, IEEE Trans. on
Circuits and Systems | (TCAS-I), vol. 69, iss. 3, pp. 973-984, Mar. 2022.

Besides, two JSSCs manuscripts are under writing about fractional-N CSL and ultra-low flicker
phase noise quadrature DCO, which will be submitted soon.

Future work:
e JSSC writing
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